Какие из данных утверждений верны? Запишите их номера.
1) Две окружности пересекаются, если радиус одной окружности больше радиуса другой окружности.
2) Если при пересечении двух прямых третьей прямой внутренние накрест лежащие углы равны, то эти прямые параллельны.
3) У равнобедренного треугольника есть центр симметрии.
Проверим каждое из утверждений.
1) «Две окружности пересекаются, если радиус одной окружности больше радиуса другой окружности» — неверно, т. к. для того, чтобы утверждать, пересекаются окружности или нет, нужно еще знать взаимное положение их центров.
2) «Если при пересечении двух прямых третьей прямой внутренние накрест лежащие углы равны, то эти прямые параллельны» — верно; по признаку параллельных прямых.
3) «У равнобедренного треугольника есть центр симметрии» — неверно, верным будет утверждение: «У равнобедренного треугольника есть ось симметрии».
Ответ: 2.



