Задания
Версия для печати и копирования в MS Word
Тип 11 № 321920
i

Уста­но­ви­те со­от­вет­ствие между гра­фи­ка­ми функ­ций и фор­му­ла­ми, ко­то­рые их за­да­ют.

 

А)

Б)

В)

 

1)  y=x в квад­ра­те минус 7x плюс 9

2)  y= минус x в квад­ра­те минус 7x минус 9

3)  y=x в квад­ра­те плюс 7x плюс 9

4)  y= минус x в квад­ра­те плюс 7x минус 9

 

Ответ ука­жи­те в виде по­сле­до­ва­тель­но­сти цифр без про­бе­лов и за­пя­тых в ука­зан­ном по­ряд­ке.

АБВ

Спрятать решение

Ре­ше­ние.

Вы­де­лим во всех вы­ра­же­ни­ях пол­ный квад­рат:

1)  y=x в квад­ра­те минус 7x плюс 9= левая круг­лая скоб­ка x минус дробь: чис­ли­тель: 7, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в квад­ра­те минус дробь: чис­ли­тель: 13, зна­ме­на­тель: 4 конец дроби . Ветви па­ра­бо­лы на­прав­ле­ны вверх, вер­ши­на па­ра­бо­лы на­хо­дит­ся в точке  левая круг­лая скоб­ка дробь: чис­ли­тель: 7, зна­ме­на­тель: 2 конец дроби ; минус дробь: чис­ли­тель: 13, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка . Такой гра­фик изоб­ра­жен на ри­сун­ке Б).

2)  y= минус x в квад­ра­те минус 7x минус 9= минус левая круг­лая скоб­ка x в квад­ра­те плюс 7x плюс 9 пра­вая круг­лая скоб­ка = минус левая круг­лая скоб­ка левая круг­лая скоб­ка x плюс дробь: чис­ли­тель: 7, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в квад­ра­те минус дробь: чис­ли­тель: 13, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка = минус левая круг­лая скоб­ка x плюс дробь: чис­ли­тель: 7, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в квад­ра­те плюс дробь: чис­ли­тель: 13, зна­ме­на­тель: 4 конец дроби . Ветви па­ра­бо­лы на­прав­ле­ны вниз, вер­ши­на па­ра­бо­лы на­хо­дит­ся в точке  левая круг­лая скоб­ка минус дробь: чис­ли­тель: 7, зна­ме­на­тель: 2 конец дроби ; дробь: чис­ли­тель: 13, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка . Такой гра­фик изоб­ра­жен на ри­сун­ке В).

3)  y=x в квад­ра­те плюс 7x плюс 9= левая круг­лая скоб­ка x плюс дробь: чис­ли­тель: 7, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в квад­ра­те минус дробь: чис­ли­тель: 13, зна­ме­на­тель: 4 конец дроби . Ветви па­ра­бо­лы на­прав­ле­ны вверх, вер­ши­на па­ра­бо­лы на­хо­дит­ся в точке  левая круг­лая скоб­ка минус дробь: чис­ли­тель: 7, зна­ме­на­тель: 2 конец дроби ; минус дробь: чис­ли­тель: 13, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка . Та­ко­го гра­фи­ка нет среди пред­став­лен­ных.

4)  y= минус x в квад­ра­те плюс 7x минус 9= минус левая круг­лая скоб­ка x в квад­ра­те минус 7x плюс 9 пра­вая круг­лая скоб­ка = минус левая круг­лая скоб­ка левая круг­лая скоб­ка x минус дробь: чис­ли­тель: 7, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в квад­ра­те минус дробь: чис­ли­тель: 13, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка = минус левая круг­лая скоб­ка x минус дробь: чис­ли­тель: 7, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в квад­ра­те плюс дробь: чис­ли­тель: 13, зна­ме­на­тель: 4 конец дроби . Ветви па­ра­бо­лы на­прав­ле­ны вниз, вер­ши­на па­ра­бо­лы на­хо­дит­ся в точке  левая круг­лая скоб­ка дробь: чис­ли­тель: 7, зна­ме­на­тель: 2 конец дроби ; дробь: чис­ли­тель: 13, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка . Такой гра­фик изоб­ра­жен на ри­сун­ке А).

 

Ответ: 412.


Аналоги к заданию № 34: 314771 314772 321919 ... Все

Раздел кодификатора ФИПИ: 5.2 Опре­де­ле­ние свойств функ­ций