СДАМ ГИА: РЕШУ ОГЭ
Образовательный портал для подготовки к экзаменам
Математика
математика
сайты - меню - вход - новости


Задания
Версия для печати и копирования в MS Word
Задание 20 № 169931

Какие из сле­ду­ю­щих утверждений верны?

 

1) Пра­виль­ный шестиугольник имеет шесть осей симметрии.

2) Пря­мая не имеет осей симметрии.

3) Цен­тром симметрии ромба яв­ля­ет­ся точка пе­ре­се­че­ния его диагоналей.

4) Рав­но­бед­рен­ный треугольник имеет три оси симметрии.

 

Если утвер­жде­ний несколько, за­пи­ши­те их номера в по­ряд­ке возрастания.

Решение.

Проверим каждое из утверждений.

1) «Правильный шестиугольник имеет шесть осей симметрии.»— верно, при четном количестве углов оси симметрии проходят через противоположные вершины и через середины противоположных сторон.

2) «Прямая не имеет осей симметрии.» — неверно, прямая имеет бесконечное число осей симметрии.

3) «Центром симметрии ромба является точка пересечения его диагоналей.» — верно, ромб является параллелограммом, а середина диагонали параллелограмма является его центром симметрии.

4) «Равнобедренный треугольник имеет три оси симметрии.» — неверно, у равнобедренного треугольника одна ось симметрии.

 

Ответ: 13.

Раздел кодификатора ФИПИ: 5.2 Геометрические фигуры на плоскости.