СДАМ ГИА: РЕШУ ОГЭ
Образовательный портал для подготовки к экзаменам
Математика
математика
сайты - меню - вход - новости


Задания
Версия для печати и копирования в MS Word
Задание 20 № 340868

Какое из сле­ду­ю­щих утвер­жде­ний верно?

1) Сумма углов вы­пук­ло­го четырёхугольника равна 360 градусам.

2) Сред­няя линия тра­пе­ции равна сумме её оснований.

3) Любой па­рал­ле­ло­грамм можно впи­сать в окружность.

Решение.

Проверим каждое из утверждений.

1) «Сумма углов выпуклого четырёхугольника равна 360 градусам.» — верно, по теореме о сумме углов выпуклого многоугольника сумма углов n-угольника равна 180°(n − 2). Следовательно, сумма углов выпуклого четырёхугольника равна 360 градусам.

2) «Средняя линия трапеции равна сумме её оснований.» — неверно, Средняя линия трапеции равна полусумме её оснований.

3) «Любой параллелограмм можно вписать в окружность.» — неверно, в окружность можно вписать только четырёхугольник, сумма противоположенных углов которого равна 180°.

 

Ответ: 1.