СДАМ ГИА: РЕШУ ОГЭ
Образовательный портал для подготовки к экзаменам
Математика
математика
сайты - меню - вход - новости


Задания
Версия для печати и копирования в MS Word
Задание 20 № 169923

Какие из сле­ду­ю­щих утвер­жде­ний верны?

 

1) Через любые три точки про­хо­дит не более одной окружности.

2) Если рас­сто­я­ние между цен­тра­ми двух окруж­но­стей боль­ше суммы их диаметров, то эти окруж­но­сти не имеют общих точек.

3) Если ра­ди­у­сы двух окруж­но­стей равны 3 и 5, а рас­сто­я­ние между их цен­тра­ми равно 1, то эти окруж­но­сти пересекаются.

4) Если дуга окруж­но­сти со­став­ля­ет 80°, то впи­сан­ный угол, опи­ра­ю­щий­ся на эту дугу окружности, равен 40°.

 

Если утвер­жде­ний несколько, за­пи­ши­те их номера в по­ряд­ке возрастания.

Решение.

Проверим каждое из утверждений.

1) «Через любые три точки проходит не более одной окружности.» — верно, Через любые три точки, не лежащие на одной прямой, проходит единственная окружность. Если точки лежат на одной прямой, то окружность провести невозможно. Тем самым, через любые три точки можно провести не более одной окружности.

2) «Если расстояние между центрами двух окружностей больше суммы их диаметров, то эти окружности не имеют общих точек.» — верно, если расстояние от центра до прямой меньше радиуса, то окружности имеют две общие точки, если окружности касаются то окружности имеют одну общую точку, если расстояние больше радиуса, то окружности не имеют общих точек.

3) «Если радиусы двух окружностей равны 3 и 5, а расстояние между их центрами равно 1, то эти окружности пересекаются» — неверно, окружность, радиус которой равен 3, лежит внутри окружности с радиусом 5.

4) «Если дуга окружности составляет 80°, то вписанный угол, опирающийся на эту дугу окружности, равен 40°.» — верно, вписанный угол измеряется половиной дуги,на которую он опирается.

 

Ответ: 124.

Раздел кодификатора ФИПИ: 5.2 Геометрические фигуры на плоскости.
Спрятать решение · Прототип задания · ·
Софья Орлова 04.04.2016 13:30

В первом утверждении написано "через ЛЮБЫЕ три точки" и не уточнено, что три точки не лежат на одной прямой. Поэтому ответ не может быть верным.

Ирина Сафиулина

Добрый день!

Стоит заметить, что в утверждении написано "НЕ БОЛЕЕ одной окруж­но­сти". Это автоматически включает условие, что окружность можно и не провести.