Вариант № 29349177

При вы­пол­не­нии за­да­ний с крат­ким от­ве­том впи­ши­те в поле для от­ве­та цифру, ко­то­рая со­от­вет­ству­ет но­ме­ру пра­виль­но­го от­ве­та, или число, слово, по­сле­до­ва­тель­ность букв (слов) или цифр. Ответ сле­ду­ет за­пи­сы­вать без про­бе­лов и каких-либо до­пол­ни­тель­ных сим­во­лов. Дроб­ную часть от­де­ляй­те от целой де­ся­тич­ной за­пя­той. Еди­ни­цы из­ме­ре­ний пи­сать не нужно.


Если ва­ри­ант задан учи­те­лем, вы мо­же­те впи­сать или за­гру­зить в си­сте­му от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Учи­тель уви­дит ре­зуль­та­ты вы­пол­не­ния за­да­ний с крат­ким от­ве­том и смо­жет оце­нить за­гру­жен­ные от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей ста­ти­сти­ке.


Версия для печати и копирования в MS Word
1
Тип 1 № 366647
i
Развернуть

Для стан­ций, ука­зан­ных в таб­ли­це, опре­де­ли­те, ка­ки­ми циф­ра­ми они обо­зна­че­ны на схеме. За­пол­ни­те таб­ли­цу, в ответ за­пи­ши­те по­сле­до­ва­тель­ность че­ты­рех цифр.

 

Стан­цииВе­се­лаяВет­ре­наяЗвезд­наяПти­чья
Цифры

Ответ:

2
Тип 2 № 366648
i
Развернуть

Бри­га­да ме­ня­ет рель­сы на участ­ке между стан­ци­я­ми На­деж­да и Верх­няя про­тя­жен­но­стью 12,4 км. Ра­бо­ты на­ча­лись в по­не­дель­ник. Каж­дый ра­бо­чий день бри­га­да ме­ня­ла по 400 мет­ров рель­сов. По суб­бо­там и вос­кре­се­ньям за­ме­на рель­сов не осу­ществ­ля­лась, но про­езд был за­крыт до конца всего ре­мон­та. Сколь­ко дней был за­крыт про­езд между ука­зан­ны­ми стан­ци­я­ми?


Ответ:

3
Тип 3 № 366649
i
Развернуть

Тер­ри­то­рия, на­хо­дя­ща­я­ся внут­ри коль­це­вой линии, на­зы­ва­ет­ся Цен­траль­ным го­род­ским рай­о­ном. Най­ди­те его пло­щадь S (в км2), если длина коль­це­вой ветки равна 40 км. В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния S · π.


Ответ:

4
Тип 4 № 366650
i
Развернуть

Най­ди­те рас­сто­я­ние (в км) между стан­ци­я­ми Смо­ро­ди­но­вая и Хок­кей­ная, если длина Ра­дуж­ной ветки равна 17 км, рас­сто­я­ние от Звезд­ной до Смо­ро­ди­но­вой равно 10 км, а от Быст­рой до Хок­кей­ной  — 12 км. Все рас­сто­я­ния даны по же­лез­ной до­ро­ге.


Ответ:

5
Тип 5 № 366651
i
Развернуть

Школь­ник Антон в сред­нем в месяц со­вер­ша­ет 45 по­ез­док в метро. Для опла­ты по­ез­док можно по­ку­пать раз­лич­ные кар­точ­ки. Сто­и­мость одной по­езд­ки для раз­ных видов кар­то­чек раз­лич­на. По ис­те­че­нии ме­ся­ца Антон уедет из го­ро­да и не­ис­поль­зо­ван­ные кар­точ­ки об­ну­ля­ют­ся. Во сколь­ко руб­лей обой­дет­ся самый де­ше­вый ва­ри­ант?

 

Ко­ли­че­ство по­ез­докСто­и­мость кар­точ­ки
(руб.)
До­пол­ни­тель­ные усло­вия
140школь­ни­кам скид­ка 15%
10370школь­ни­кам скид­ка 10%
301050школь­ни­кам скид­ка 10%
501600нет
Не огра­ни­че­но2000нет

Ответ:

6
Тип 6 № 314132
i

Най­ди­те зна­че­ние вы­ра­же­ния  80 плюс 0,4 умно­жить на левая круг­лая скоб­ка минус 10 пра­вая круг­лая скоб­ка в кубе .


Ответ:

7
Тип 7 № 322422
i

На ко­ор­ди­нат­ной пря­мой от­ме­че­ны числа a, b и c.

Какая из раз­но­стей a − b, a − c, c − b по­ло­жи­тель­на?

В от­ве­те ука­жи­те номер пра­виль­но­го ва­ри­ан­та.

 

1)  a − b

2)  a − c

3)  c − b

4)  ни одна из них


Ответ:

8
Тип Д8 № 317368
i

Зна­че­ние ка­ко­го из чисел яв­ля­ет­ся наи­боль­шим?

В от­ве­те ука­жи­те номер пра­виль­но­го ва­ри­ан­та.

 

1)   ко­рень из: на­ча­ло ар­гу­мен­та: 3,6 конец ар­гу­мен­та

2)  4 ко­рень из: на­ча­ло ар­гу­мен­та: 0,2 конец ар­гу­мен­та

3)   дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 64 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби

4)   ко­рень из д робь: чис­ли­тель: 11, зна­ме­на­тель: 6 конец дроби умно­жить на ко­рень из д робь: чис­ли­тель: 6, зна­ме­на­тель: 3 конец дроби


Ответ:

9
Тип 9 № 338658
i

Ре­ши­те урав­не­ние 4x плюс 7=0.


Ответ:

10
Тип 10 № 325540
i

Стре­лок 4 раза стре­ля­ет по ми­ше­ням. Ве­ро­ят­ность по­па­да­ния в ми­шень при одном вы­стре­ле равна 0,5. Най­ди­те ве­ро­ят­ность того, что стре­лок пер­вые 3 раза попал в ми­ше­ни, а по­след­ний раз про­мах­нул­ся.


Ответ:

11
Тип 11 № 311406
i

На ри­сун­ке изоб­ра­жен гра­фик функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка . Какие из утвер­жде­ний от­но­си­тель­но этой функ­ции не­вер­ны? Ука­жи­те их но­ме­ра.

 

1)  функ­ция воз­рас­та­ет на про­ме­жут­ке  левая квад­рат­ная скоб­ка минус 2; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

2)  f левая круг­лая скоб­ка 3 пра­вая круг­лая скоб­ка боль­ше f левая круг­лая скоб­ка минус 3 пра­вая круг­лая скоб­ка

3)  f левая круг­лая скоб­ка 0 пра­вая круг­лая скоб­ка = минус 2

4)  пря­мая y=2  пе­ре­се­ка­ет гра­фик в точ­ках  левая круг­лая скоб­ка минус 2; 2 пра­вая круг­лая скоб­ка   и  левая круг­лая скоб­ка 5; 2 пра­вая круг­лая скоб­ка


Ответ:

12
Тип Д12 № 353273
i

Вы­пи­са­ны пер­вые не­сколь­ко чле­нов ариф­ме­ти­че­ской про­грес­сии: −26 ; −20; −14; … Най­ди­те пер­вый по­ло­жи­тель­ный член этой про­грес­сии.


Ответ:

13
Тип 8 № 353059
i

Най­ди­те зна­че­ние вы­ра­же­ния  левая круг­лая скоб­ка дробь: чис­ли­тель: 2b, зна­ме­на­тель: 5a конец дроби минус дробь: чис­ли­тель: 5a, зна­ме­на­тель: 2b конец дроби пра­вая круг­лая скоб­ка умно­жить на дробь: чис­ли­тель: 1, зна­ме­на­тель: 2b плюс 5a конец дроби при a= дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби , b= дробь: чис­ли­тель: 1, зна­ме­на­тель: 9 конец дроби


Ответ:

14
Тип 12 № 311535
i

Ра­ди­ус впи­сан­ной в пря­мо­уголь­ный тре­уголь­ник окруж­но­сти можно найти по фор­му­ле r= дробь: чис­ли­тель: a плюс b минус c, зна­ме­на­тель: 2 конец дроби , где a  и b  — ка­те­ты, а c  — ги­по­те­ну­за тре­уголь­ни­ка. Поль­зу­ясь этой фор­му­лой, най­ди­те b, если r=1,2; c=6,8  и a=6.


Ответ:

15
Тип 13 № 349529
i

На каком ри­сун­ке изоб­ра­же­но мно­же­ство ре­ше­ний не­ра­вен­ства  x в квад­ра­те минус 2x минус 3 боль­ше или равно 0?

 

1)

2)

 

3)

4)


Ответ:

16
Тип 15 № 350766
i

В па­рал­ле­ло­грам­ме ABCD диа­го­наль AC в 2 раза боль­ше сто­ро­ны AB и ∠ACD  =  77°. Най­ди­те мень­ший угол между диа­го­на­ля­ми па­рал­ле­ло­грам­ма. Ответ дайте в гра­ду­сах


Ответ:

17
Тип 16 № 348379
i

Центр окруж­но­сти, опи­сан­ной около тре­уголь­ни­ка ABC, лежит на сто­ро­не AB. Най­ди­те угол ABC, если угол BAC равен 30°. Ответ дайте в гра­ду­сах.


Ответ:

18
Тип 17 № 169848
i

Пе­ри­метр рав­но­сто­рон­не­го тре­уголь­ни­ка равен 30. Най­ди­те его пло­щадь, де­лен­ную на  ко­рень из 3 .


Ответ:

19
Тип Д24 № 351667
i

Най­ди­те угол ABC. Ответ дайте в гра­ду­сах.


Ответ:

20
Тип 19 № 311851
i

Ука­жи­те но­ме­ра вер­ных утвер­жде­ний.

 

1)  Если при пе­ре­се­че­нии двух пря­мых тре­тьей пря­мой со­от­вет­ствен­ные углы равны 37°, то эти две пря­мые па­рал­лель­ны.

2)  Через любые три точки про­хо­дит не более одной пря­мой.

3)  Сумма вер­ти­каль­ных углов равна 180°.

 

Если утвер­жде­ний не­сколь­ко, за­пи­ши­те их но­ме­ра в по­ряд­ке воз­рас­та­ния.


Ответ:

21
Тип 20 № 338894
i

Ре­ши­те си­сте­му урав­не­ний  си­сте­ма вы­ра­же­ний  новая стро­ка x в квад­ра­те плюс y в квад­ра­те =37, новая стро­ка xy=6. конец си­сте­мы


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

22
Тип 21 № 338712
i

Три бри­га­ды из­го­то­ви­ли вме­сте 266 де­та­лей. Из­вест­но, что вто­рая бри­га­да из­го­то­ви­ла де­та­лей в 4 раза боль­ше, чем пер­вая и на 5 де­та­лей мень­ше, чем тре­тья. На сколь­ко де­та­лей боль­ше из­го­то­ви­ла тре­тья бри­га­да, чем пер­вая.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

23
Тип 22 № 353416
i

По­строй­те гра­фик функ­ции y= дробь: чис­ли­тель: левая круг­лая скоб­ка 0,75x в квад­ра­те минус 0,75x пра­вая круг­лая скоб­ка |x|, зна­ме­на­тель: x минус 1 конец дроби и опре­де­ли­те, при каких зна­че­ни­ях m пря­мая y=m не имеет с гра­фи­ком ни одной общей точки.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

24
Тип 23 № 339403
i

Бис­сек­три­сы углов A и D па­рал­ле­ло­грам­ма ABCD пе­ре­се­ка­ют­ся в точке, ле­жа­щей на сто­ро­не BC. Най­ди­те AB, если BC  =  34.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

25
Тип 24 № 333348
i

Из­вест­но, что около че­ты­рех­уголь­ни­ка ABCD можно опи­сать окруж­ность и что про­дол­же­ния сто­рон AD и BC че­ты­рех­уголь­ни­ка пе­ре­се­ка­ют­ся в точке K. До­ка­жи­те, что тре­уголь­ни­ки KAB и KCD по­доб­ны.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

26
Тип 25 № 311702
i

В пря­мо­уголь­ном тре­уголь­ни­ке ABC катет AC равен 8, катет BC равен 15. Най­ди­те ра­ди­ус окруж­но­сти, ко­то­рая про­хо­дит через концы ги­по­те­ну­зы тре­уголь­ни­ка и ка­са­ет­ся пря­мой BC.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить работу, свериться с ответами, увидеть решения.