Гриша летом отдыхает у дедушки в деревне Ушаково. В субботу они собираются съездить на машине в село Бережки. Из Ушакова в Бережки можно проехать по прямой грунтовой дороге. Есть более длинный путь по шоссе — через деревню Дубенки до деревни Афонино, где нужно повернуть под прямым углом налево на другое шоссе, ведущее в Бережки. Есть и третий маршрут: в деревне Дубенки можно свернуть на прямую грунтовую дорогу, которая идет мимо озера прямо в село Бережки.
По шоссе Гриша с дедушкой едут со скоростью 60 км/ч, а по грунтовой дороге —50 км/ч. На плане изображено взаимное расположение населенных пунктов, сторона каждой клетки равна 2 км.
Определите, на какой маршрут потребуется меньше всего времени. В ответе укажите, сколько минут потратят на дорогу Гриша с дедушкой, если поедут этим маршрутом.
Гриша с дедушкой могут поехать тремя разными маршрутами. Рассмотрим каждый из них.
1) По грунтовой дороге напрямую. Длина такого пути равна длине гипотенузы прямоугольного треугольника с катетами 30 и 16. По теореме Пифагора имеем:
Двигаясь по грунтовой дороге со скоростью 50 км/ч дедушка с Гришой потратят 34 : 50 = 0,68 часа или 40,8 минут.
2) Сначала по шоссе, а затем по грунтовой дороге вдоль озера. По шоссе Гриша с дедушкой проедут 18 километров со скоростью 60 км/ч. Следовательно, они затратят 18 : 60 = 0,3 часа или 18 минут. Дальше по условию задачи они свернут на грунтовую дорогу длина которой равна длине гипотенузы прямоугольного треугольника с катетами 12 и 16. Таким образом, по теореме Пифагора длина составит:
По грунтовой дороге Гриша с дедушкой едут со скоростью 50 км/ч, следовательно, они затратят 20 : 50 = 0,4 часа или 24 минуты.
Таким образом, Гриша с дедушкой на весь путь затратят 24 + 18 = 42 минуты.
3) По шоссе через Афонино. Расстояние, которое проедут Гриша с дедушкой, проезжая через Афонино, равно сумме длин катетов прямоугольного треугольника с катетами 30 и 16. Таким образом, имеем, что искомое расстояние равно 30 + 16 = 46.
Двигаясь по шоссе со скоростью 60 км/ч Гриша с дедушкой потратят 46 : 60 часа или 46 минут.
Таким образом, самый быстрый путь составит 40,8 минут.
Ответ: 40,8.



