Какие из следующих утверждений верны?
1) Окружность имеет бесконечно много центров симметрии.
2) Прямая не имеет осей симметрии.
3) Правильный пятиугольник имеет пять осей симметрии.
4) Квадрат не имеет центра симметрии.
Если утверждений несколько, запишите их номера в порядке возрастания.
Проверим каждое из утверждений.
1) «Окружность имеет бесконечно много центров симметрии.»— неверно, плоская фигура обладает
центральной симметрией, если она симметрична сама себе относительно центра
2) «Прямая не имеет осей симметрии.» — неверно, прямая имеет бесконечное число осей симметрии.
3) «Правильный пятиугольник имеет пять осей симметрии.» — верно, каждая ось симметрии любого правильного многоугольника с нечетным числом сторон проходит через вершину и середину противоположной стороны.
4) «Квадрат не имеет центра симметрии.» — неверно, центр симметрии квадрата является точка пересечения диагоналей.
Ответ: 3.



