математика
Математика
Информатика
Английский язык
Немецкий язык
Французcкий язык
Испанский язык
Физика
Химия
Биология
География
Обществознание
Литература
История
сайты - меню - вход - новости




Задания
Версия для печати и копирования в MS Word
Задание 20 № 169929

Какие из сле­ду­ю­щих утверждений верны?

 

1) Около лю­бо­го правильного мно­го­уголь­ни­ка можно опи­сать не более одной окружности.

2) Центр окружности, опи­сан­ной около тре­уголь­ни­ка со сторонами, рав­ны­ми 3, 4, 5, на­хо­дит­ся на сто­ро­не этого треугольника.

3) Цен­тром окружности, опи­сан­ной около квадрата, яв­ля­ет­ся точка пе­ре­се­че­ния его диагоналей.

4) Около лю­бо­го ромба можно опи­сать окружность.

 

Если утвер­жде­ний несколько, за­пи­ши­те их номера в по­ряд­ке возрастания.

Решение.

Проверим каж­дое из утверждений.

1) «Около лю­бо­го правильного мно­го­уголь­ни­ка можно опи­сать не более одной окружности.»— верно, около лю­бо­го правильного мно­го­уголь­ни­ка можно опи­сать окружность, и при­том только одну.

2) «Центр окружности, опи­сан­ной около тре­уголь­ни­ка со сторонами, рав­ны­ми 3, 4, 5, на­хо­дит­ся на сто­ро­не этого треугольника.» — верно, тре­уголь­ник с та­ки­ми сторонами яв­ля­ет­ся прямоугольным, таким образом, центр окруж­но­сти лежит на гипотенузе.

3) «Центром окружности, опи­сан­ной около квадрата, яв­ля­ет­ся точка пе­ре­се­че­ния его диагоналей.» — верно, диа­го­на­ли квадрата точ­кой пересечения де­лят­ся пополам, таким образом, цен­тром окружности яв­ля­ет­ся точка пре­се­че­ния диагоналей.

4) «Около лю­бо­го ромба можно опи­сать окружность.» — неверно, чтобы около четырёхуголь­ни­ка можно было опи­сать окруж­ность, не­об­хо­ди­мо, чтобы сумма про­ти­во­по­лож­ных углов четырёхуголь­ни­ка со­став­ля­ла 180°. Это верно не для лю­бо­го ромба.

 

Ответ: 123.


Аналоги к заданию № 169915: 169921 169927 348367 348392 348466 348533 348535 348538 348616 348630 ... Все