Задания
Версия для печати и копирования в MS WordТип 17 № 169846 

В прямоугольном треугольнике гипотенуза равна 10, а один из острых углов равен 45°. Найдите площадь треугольника.
Решение.
Сумма углов в треугольнике равна 180°, поэтому второй острый угол равен 180° − 90° − 45° = 45°. Оба острых угла равны, следовательно, данный треугольник — равнобедренный, откуда получаем, что оба катета равны. Длина катета равна Площадь прямоугольного треугольника можно найти как половину произведения катетов:
Ответ: 25.