Алексей Юрьевич решил построить на дачном участке теплицу длиной NP=5,5 м. Для этого он сделал прямоугольный фундамент. Для каркаса теплицы Алексей Юрьевич заказывает металлические дуги в форме полуокружностей длиной 5,3 м каждая и пленку для обтяжки. В передней стенке планируется вход, показанный на рисунке прямоугольником ACDB. Точки A и B— середины отрезков MO и ON соответственно.
Какое наименьшее количество дуг нужно заказать, чтобы расстояние между соседними дугами было не более 65 см?
Переведем 65 см = 0,65 м. Найдем количество промежутков между дугами: 5,5 : 0,65 ≈ 8,5, следовательно, наименьшее количество промежутков — 9. Количество дуг на единицу больше, чем количество промежутков: 9 + 1 = 10.
Ответ: 10.



