Варианты заданий
Версия для печати и копирования в MS Word
1
Тип 25 № 52
i

Ос­но­ва­ние AC рав­но­бед­рен­но­го тре­уголь­ни­ка ABC равно 12. Окруж­ность ра­ди­у­са 8 с цен­тром вне этого тре­уголь­ни­ка ка­са­ет­ся про­дол­же­ний бо­ко­вых сто­рон тре­уголь­ни­ка и ка­са­ет­ся ос­но­ва­ния AC в его се­ре­ди­не. Най­ди­те ра­ди­ус окруж­но­сти, впи­сан­ной в тре­уголь­ник ABC .


2
Тип 25 № 340603
i

Ос­но­ва­ние AC рав­но­бед­рен­но­го тре­уголь­ни­ка ABC равно 12. Окруж­ность ра­ди­у­са 8 с цен­тром вне этого тре­уголь­ни­ка ка­са­ет­ся про­дол­же­ний бо­ко­вых сто­рон тре­уголь­ни­ка и ка­са­ет­ся ос­но­ва­ния AC. Най­ди­те ра­ди­ус окруж­но­сти, впи­сан­ной в тре­уголь­ник ABC.

Источники:

3
Тип 25 № 311550
i

Ос­но­ва­ние AC  рав­но­бед­рен­но­го тре­уголь­ни­ка ABC  равно 10. Окруж­ность ра­ди­у­са 7,5 с цен­тром вне этого тре­уголь­ни­ка ка­са­ет­ся про­дол­же­ния бо­ко­вых сто­рон тре­уголь­ни­ка и ка­са­ет­ся ос­но­ва­ния AC  в его се­ре­ди­не. Най­ди­те ра­ди­ус окруж­но­сти, впи­сан­ной в тре­уголь­ник ABC.

Источник: ГИА-2013. Ма­те­ма­ти­ка. Ди­а­гно­сти­че­ская ра­бо­та № 1. (вар. 1) 02.10.2012г

4
Тип 25 № 311556
i

Ос­но­ва­ние AC рав­но­бед­рен­но­го тре­уголь­ни­ка ABC равно 12. Окруж­ность ра­ди­у­са 8 с цен­тром вне этого тре­уголь­ни­ка ка­са­ет­ся про­дол­же­ния бо­ко­вых сто­рон тре­уголь­ни­ка и ка­са­ет­ся ос­но­ва­ния AC в его се­ре­ди­не. Най­ди­те ра­ди­ус окруж­но­сти, впи­сан­ный в тре­уголь­ник ABC.

Источник: ГИА-2013. Ма­те­ма­ти­ка. Ди­а­гно­сти­че­ская ра­бо­та № 1. (вар. 2) 02.10.12г

5
Тип 25 № 311697
i

Ос­но­ва­ние AC рав­но­бед­рен­но­го тре­уголь­ни­ка ABC равно 12. Окруж­ность ра­ди­у­са 8 с цен­тром вне этого тре­уголь­ни­ка ка­са­ет­ся про­дол­же­ний бо­ко­вых сто­рон тре­уголь­ни­ка и ка­са­ет­ся ос­но­ва­ния AC. Най­ди­те ра­ди­ус окруж­но­сти, впи­сан­ной в тре­уголь­ник ABC .


6
Тип 25 № 314823
i

Ос­но­ва­ние AC рав­но­бед­рен­но­го тре­уголь­ни­ка ABC равно 6. Окруж­ность ра­ди­у­са 4,5 с цен­тром вне этого тре­уголь­ни­ка ка­са­ет­ся про­дол­же­ния бо­ко­вых сто­рон тре­уголь­ни­ка и ка­са­ет­ся ос­но­ва­ния AC в его се­ре­ди­не. Най­ди­те ра­ди­ус окруж­но­сти, впи­сан­ной в тре­уголь­ник ABC.

Источник: Банк за­да­ний ФИПИ

7
Тип 25 № 314827
i

Ос­но­ва­ние AC рав­но­бед­рен­но­го тре­уголь­ни­ка ABC равно 12. Окруж­ность ра­ди­у­са 8 с цен­тром вне этого тре­уголь­ни­ка ка­са­ет­ся про­дол­же­ния бо­ко­вых сто­рон тре­уголь­ни­ка и ка­са­ет­ся ос­но­ва­ния AC в его се­ре­ди­не. Най­ди­те ра­ди­ус окруж­но­сти, впи­сан­ной в тре­уголь­ник ABC.

Источник: Банк за­да­ний ФИПИ

8
Тип 25 № 314941
i

Ос­но­ва­ние AC рав­но­бед­рен­но­го тре­уголь­ни­ка ABC равно 18. Окруж­ность ра­ди­у­са 12 с цен­тром вне этого тре­уголь­ни­ка ка­са­ет­ся про­дол­же­ния бо­ко­вых сто­рон тре­уголь­ни­ка и ка­са­ет­ся ос­но­ва­ния AC в его се­ре­ди­не. Най­ди­те ра­ди­ус окруж­но­сти, впи­сан­ной в тре­уголь­ник ABC.

Источник: Банк за­да­ний ФИПИ

9
Тип 25 № 314960
i

Ос­но­ва­ние AC рав­но­бед­рен­но­го тре­уголь­ни­ка ABC равно 10. Окруж­ность ра­ди­у­са 8 с цен­тром вне этого тре­уголь­ни­ка ка­са­ет­ся про­дол­же­ния бо­ко­вых сто­рон тре­уголь­ни­ка и ка­са­ет­ся ос­но­ва­ния AC в его се­ре­ди­не. Най­ди­те ра­ди­ус окруж­но­сти, впи­сан­ной в тре­уголь­ник ABC.

Источник: Банк за­да­ний ФИПИ

10
Тип 25 № 314971
i

Ос­но­ва­ние AC рав­но­бед­рен­но­го тре­уголь­ни­ка ABC равно 8. Окруж­ность ра­ди­у­са 5 с цен­тром вне этого тре­уголь­ни­ка ка­са­ет­ся про­дол­же­ния бо­ко­вых сто­рон тре­уголь­ни­ка и ка­са­ет­ся ос­но­ва­ния AC в его се­ре­ди­не. Най­ди­те ра­ди­ус окруж­но­сти, впи­сан­ной в тре­уголь­ник ABC.

Источник: Банк за­да­ний ФИПИ

11
Тип 25 № 314972
i

Ос­но­ва­ние AC рав­но­бед­рен­но­го тре­уголь­ни­ка ABC равно 10. Окруж­ность ра­ди­у­са 6 с цен­тром вне этого тре­уголь­ни­ка ка­са­ет­ся про­дол­же­ния бо­ко­вых сто­рон тре­уголь­ни­ка и ка­са­ет­ся ос­но­ва­ния AC в его се­ре­ди­не. Най­ди­те ра­ди­ус окруж­но­сти, впи­сан­ной в тре­уголь­ник ABC.

Источник: Банк за­да­ний ФИПИ

12
Тип 25 № 314973
i

Ос­но­ва­ние AC рав­но­бед­рен­но­го тре­уголь­ни­ка ABC равно 12. Окруж­ность ра­ди­у­са 7,5 с цен­тром вне этого тре­уголь­ни­ка ка­са­ет­ся про­дол­же­ния бо­ко­вых сто­рон тре­уголь­ни­ка и ка­са­ет­ся ос­но­ва­ния AC в его се­ре­ди­не. Най­ди­те ра­ди­ус окруж­но­сти, впи­сан­ной в тре­уголь­ник ABC.

Источник: Банк за­да­ний ФИПИ

13
Тип 25 № 314979
i

Ос­но­ва­ние AC рав­но­бед­рен­но­го тре­уголь­ни­ка ABC равно 12. Окруж­ность ра­ди­у­са 9 с цен­тром вне этого тре­уголь­ни­ка ка­са­ет­ся про­дол­же­ния бо­ко­вых сто­рон тре­уголь­ни­ка и ка­са­ет­ся ос­но­ва­ния AC в его се­ре­ди­не. Най­ди­те ра­ди­ус окруж­но­сти, впи­сан­ной в тре­уголь­ник ABC .

Источник: Банк за­да­ний ФИПИ

14
Тип 25 № 314988
i

Ос­но­ва­ние AC рав­но­бед­рен­но­го тре­уголь­ни­ка ABC равно 10. Окруж­ность ра­ди­у­са 7,5 с цен­тром вне этого тре­уголь­ни­ка ка­са­ет­ся про­дол­же­ния бо­ко­вых сто­рон тре­уголь­ни­ка и ка­са­ет­ся ос­но­ва­ния AC в его се­ре­ди­не. Най­ди­те ра­ди­ус окруж­но­сти, впи­сан­ной в тре­уголь­ник ABC.

Источник: Банк за­да­ний ФИПИ

15
Тип 25 № 314990
i

Ос­но­ва­ние AC рав­но­бед­рен­но­го тре­уголь­ни­ка ABC равно 10. Окруж­ность ра­ди­у­са 9 с цен­тром вне этого тре­уголь­ни­ка ка­са­ет­ся про­дол­же­ния бо­ко­вых сто­рон тре­уголь­ни­ка и ка­са­ет­ся ос­но­ва­ния AC в его се­ре­ди­не. Най­ди­те ра­ди­ус окруж­но­сти, впи­сан­ной в тре­уголь­ник ABC.

Источник: Банк за­да­ний ФИПИ

16
Тип 25 № 314944
i

Ос­но­ва­ние AC рав­но­бед­рен­но­го тре­уголь­ни­ка ABC равно 16. Окруж­ность ра­ди­у­са 12 с цен­тром вне этого тре­уголь­ни­ка ка­са­ет­ся про­дол­же­ния бо­ко­вых сто­рон тре­уголь­ни­ка и ка­са­ет­ся ос­но­ва­ния AC в его се­ре­ди­не. Най­ди­те ра­ди­ус окруж­но­сти, впи­сан­ной в тре­уголь­ник ABC.

Источник: Банк за­да­ний ФИПИ

17
Тип 25 № 314959
i

Ос­но­ва­ние AC рав­но­бед­рен­но­го тре­уголь­ни­ка ABC равно 4. Окруж­ность ра­ди­у­са 2,5 с цен­тром вне этого тре­уголь­ни­ка ка­са­ет­ся про­дол­же­ния бо­ко­вых сто­рон тре­уголь­ни­ка и ка­са­ет­ся ос­но­ва­ния AC в его се­ре­ди­не. Най­ди­те ра­ди­ус окруж­но­сти, впи­сан­ной в тре­уголь­ник ABC.

Источник: Банк за­да­ний ФИПИ