Основание AC равнобедренного треугольника ABC равно 18. Окружность радиуса 12 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.
Введем обозначения, приведенные на рисунке. Лучи AO и AQ — соответственно биссектрисы углов CAP и BAC, поскольку эти лучи проходят через центры вписанных окружностей. M — середина основания AC, следовательно,
Углы QOA и AOM равны друг другу, как углы с взаимно перпендикулярными сторонами. Рассмотрим треугольники QAM и AMO — они прямоугольные и имеют равные углы QOA и AOM, следовательно, эти треугольники подобны:
Отсюда следует, что радиус вписаной окружности:
Ответ:6,75.



