Задания
Версия для печати и копирования в MS WordНа окружности по разные стороны от диаметра AB взяты точки M и N. Известно, что ∠NBA = 68°. Найдите угол NMB. Ответ дайте в градусах.
Решение.
Угол NBA — вписанный, поэтому он равен половине дуги, на которую он опирается. Следовательно, дуга AN = 2∠NBA = 2 · 68° = 136°. Диаметр AB делит окружность на две равные части, поэтому величина дуги ANB равна 180°. Откуда дуга NB = 180° − 136° = 44°. Угол NMB — вписанный, поэтому он равен половине дуги, на которую он опирается, то есть равен 44°/2 = 22°.
Ответ: 22.



