Задания
Версия для печати и копирования в MS WordНа окружности по разные стороны от диаметра AB взяты точки M и N. Известно, что ∠NBA = 34°. Найдите угол NMB. Ответ дайте в градусах.
Решение.
Угол NBA — вписанный, поэтому он равен половине дуги, на которую он опирается. Следовательно, дуга AN = 2∠NBA = 2 · 34° = 68°. Диаметр AB делит окружность на две равные части, поэтому величина дуги ANB равна 180°. Откуда дуга NB = 180° − 68° = 112°. Угол NMB — вписанный, поэтому он равен половине дуги, на которую он опирается, то есть равен 112°/2 = 56°.
Ответ: 56.



