Задания
Версия для печати и копирования в MS Word
Тип 17 № 169900
i

В ромбе сто­ро­на равна 10, одна из диа­го­на­лей  — 5 левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка , а угол, ле­жа­щий на­про­тив этой диа­го­на­ли, равен 30°. Най­ди­те пло­щадь ромба.

Спрятать решение

Ре­ше­ние.

Пло­щадь ромба равна про­из­ве­де­нию сто­рон на синус угла между ними:

S=10 умно­жить на 10 умно­жить на синус 30 гра­ду­сов=50.

Ответ:50.

 

При­ме­ча­ние:

 

Можно найти вто­рую диа­го­наль по тео­ре­ме ко­си­ну­сов и вы­чис­лить пло­щадь ромба как по­ло­ви­на про­из­ве­де­ния диа­го­на­лей.

Раздел кодификатора ФИПИ: 7.3 Мно­го­уголь­ни­ки