Радиус OB окружности с центром в точке O пересекает хорду MN в её середине — точке K. Найдите длину хорды MN, если KB = 1 см, а радиус окружности равен 13 см.
Решение. Найдем отрезок OK: OK = OB − KB = 13 − 1 = 12. Так как OB перпендикулярен MN, треугольник MOK — прямоугольный. По теореме Пифагора имеем:
. Треугольник MON — равнобедренный так как MO = ON = r, тогда MK = KN. Таким образом, MN = MK·2 = 10.
Ответ: 10.
Ответ: 10
Источник: ГИА-2013. Математика. Тренировочная работа № 1(2 вар)