Вариант № 10186558
Работа доступна: с 20.10.2017 15:40 (МСК) по 23.10.2017 21:00 (МСК)

При вы­пол­не­нии за­да­ний с крат­ким от­ве­том впи­ши­те в поле для от­ве­та цифру, ко­то­рая со­от­вет­ству­ет но­ме­ру пра­виль­но­го от­ве­та, или число, слово, по­сле­до­ва­тель­ность букв (слов) или цифр. Ответ сле­ду­ет за­пи­сы­вать без про­бе­лов и каких-либо до­пол­ни­тель­ных сим­во­лов. Дроб­ную часть от­де­ляй­те от целой де­ся­тич­ной за­пя­той. Еди­ни­цы из­ме­ре­ний пи­сать не нужно.


Если ва­ри­ант задан учи­те­лем, вы мо­же­те впи­сать или за­гру­зить в си­сте­му от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Учи­тель уви­дит ре­зуль­та­ты вы­пол­не­ния за­да­ний с крат­ким от­ве­том и смо­жет оце­нить за­гру­жен­ные от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей ста­ти­сти­ке.


Прием работ окончен

Версия для печати и копирования в MS Word
1.  Тип Д5 № 324946
i

По­жар­ную лест­ни­цу дли­ной 13 м при­ста­ви­ли к окну пя­то­го этажа дома. Ниж­ний конец лест­ни­цы от­сто­ит от стены на 5 м. На какой вы­со­те рас­по­ло­же­но окно? Ответ дайте в мет­рах

2.  Тип Д5 № 352683
i

Кар­тин­ка имеет форму пря­мо­уголь­ни­ка со сто­ро­на­ми 11 см и 32 см. Ее на­кле­и­ли на белую бу­ма­гу так, что во­круг кар­тин­ки по­лу­чи­лась белая окан­тов­ка оди­на­ко­вой ши­ри­ны. Пло­щадь, ко­то­рую за­ни­ма­ет кар­тин­ка с окан­тов­кой, равна 646 см2. Ка­ко­ва ши­ри­на окан­тов­ки? Ответ дайте в сан­ти­мет­рах.

3.  Тип 15 № 311399
i

В тре­уголь­ни­ке ABC угол C равен 90°, BC = 12,  синус A = дробь: чис­ли­тель: 4, зна­ме­на­тель: 11 конец дроби . Най­ди­те AB.

4.  Тип 15 № 315068
i

Диа­го­наль AC па­рал­ле­ло­грам­ма ABCD об­ра­зу­ет с его сто­ро­на­ми углы, рав­ные 35° и 30°. Най­ди­те боль­ший угол па­рал­ле­ло­грам­ма.

5.  Тип 16 № 349182
i

На окруж­но­сти с цен­тром O от­ме­че­ны точки A и B так, что \angle AOB = 18 гра­ду­сов. Длина мень­шей дуги AB равна 98. Най­ди­те длину боль­шей дуги.

6.  Тип 16 № 314807
i

Цен­траль­ный угол AOB опи­ра­ет­ся на хорду АВ так, что угол ОАВ равен 60° . Най­ди­те длину хорды АВ, если ра­ди­ус окруж­но­сти равен 8.

7.  Тип 17 № 349592
i

Ос­но­ва­ния тра­пе­ции равны 6 и 24, одна из бо­ко­вых сто­рон равна 11, а синус угла между ней и одним из ос­но­ва­ний равен  дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби . Най­ди­те пло­щадь тра­пе­ции.

8.  Тип 17 № 353064
i

В тра­пе­ции ABCD из­вест­но, что AD  =  9, BC  =  1, а ее пло­щадь равна 20. Най­ди­те пло­щадь тра­пе­ции BCNM, где MN – сред­няя линия тра­пе­ции ABCD.

9.  Тип 18 № 351011
i

На клет­ча­той бу­ма­ге с раз­ме­ром клет­ки 1х1 изоб­ра­же­на тра­пе­ция. Най­ди­те длину ее сред­ней линии.

10.  Тип 18 № 348480
i

На клет­ча­той бу­ма­ге с раз­ме­ром клет­ки 1х1 изоб­ра­жен тре­уголь­ник ABC. Най­ди­те длину его сред­ней линии, па­рал­лель­ной сто­ро­не AC.

11.  Тип 19 № 169923
i

Какие из сле­ду­ю­щих утвер­жде­ний верны?

 

1)  Через любые три точки про­хо­дит не более одной окруж­но­сти.

2)  Если рас­сто­я­ние между цен­тра­ми двух окруж­но­стей боль­ше суммы их диа­мет­ров, то эти окруж­но­сти не имеют общих точек.

3)  Если ра­ди­у­сы двух окруж­но­стей равны 3 и 5, а рас­сто­я­ние между их цен­тра­ми равно 1, то эти окруж­но­сти пе­ре­се­ка­ют­ся.

4)  Если дуга окруж­но­сти со­став­ля­ет 80°, то впи­сан­ный угол, опи­ра­ю­щий­ся на эту дугу окруж­но­сти, равен 40°.

 

Если утвер­жде­ний не­сколь­ко, за­пи­ши­те их но­ме­ра в по­ряд­ке воз­рас­та­ния.

12.  Тип 19 № 341676
i

Какие из сле­ду­ю­щих утвер­жде­ний верны?

 

1)  Тре­уголь­ни­ка со сто­ро­на­ми 1, 2, 4 не су­ще­ству­ет.

2)  Смеж­ные углы равны.

3)  Все диа­мет­ры окруж­но­сти равны между собой.

 

Если утвер­жде­ний не­сколь­ко, за­пи­ши­те их но­ме­ра в по­ряд­ке воз­рас­та­ния.