Задания
Версия для печати и копирования в MS Word
Задания Д2 № 315114

Укажите номера верных утверждений.

 

1) Центр вписанной окружности равнобедренного треугольника лежит на высоте, проведённой к основанию треугольника.

2) Ромб не является параллелограммом.

3) Сумма острых углов прямоугольного треугольника равна 90°.

Спрятать решение

Решение.

Проверим каждое из утверждений.

1) «Центр вписанной окружности равнобедренного треугольника лежит на высоте, проведённой к основанию треугольника» — верно, центр вписанной окружности — точка пересечения биссектрис, а высота, проведённая к основанию равнобедренного треугольника как раз является биссектрисой.

2) «Ромб не является параллелограммом» — неверно, ромб — частный случай параллелограмма.

3) «Сумма острых углов прямоугольного треугольника равна 90°» — верно, поскольку сумма углов в любом треугольнике 180°, а в прямоугольном треугольнике один угол равен 90°.

 

Ответ: 13.

Источник: Банк заданий ФИПИ