Задания
Версия для печати и копирования в MS Word
Тип 21 № 311601
i

Рас­сто­я­ние между го­ро­да­ми А и В равно 490 км. Из го­ро­да А в город В со ско­ро­стью 55 км/ч вы­ехал пер­вый ав­то­мо­биль, а через час после этого нав­стре­чу ему из го­ро­да В вы­ехал со ско­ро­стью 90 км/ч вто­рой ав­то­мо­биль. На каком рас­сто­я­нии от го­ро­да А ав­то­мо­би­ли встре­тят­ся?

Спрятать решение

Ре­ше­ние.

Пусть x  км  — ис­ко­мое рас­сто­я­ние, x боль­ше 0.

Со­ста­вим таб­ли­цу по дан­ным за­да­чи:

 

Ско­рость, км/чВремя, чРас­сто­я­ние, км
Пер­вый ав­то­мо­биль55 дробь: чис­ли­тель: x, зна­ме­на­тель: 55 конец дроби x
Вто­рой ав­то­мо­биль90 дробь: чис­ли­тель: 490 минус x, зна­ме­на­тель: 90 конец дроби 490 минус x

 

Так как вто­рой ав­то­мо­биль вышел на 1 ч. позже пер­во­го, со­ста­вим урав­не­ние:

 дробь: чис­ли­тель: x, зна­ме­на­тель: 55 конец дроби минус дробь: чис­ли­тель: 490 минус x, зна­ме­на­тель: 90 конец дроби = 1 рав­но­силь­но 18x минус 5390 плюс 11x = 990 рав­но­силь­но 29x = 6380 рав­но­силь­но x = 220

Ответ: 220 км.

 

Дру­гое ре­ше­ние:

За пер­вый час пути ав­то­мо­биль, вы­ехав­ший из го­ро­да А, про­ехал 55 ки­ло­мет­ров и рас­сто­я­ние от него до го­ро­да В стало рав­ным 435 км. Далее, ско­рость сбли­же­ния двух ав­то­мо­би­лей равна 145 км/ч, зна­чит, они встре­тят­ся через 3 часа после вы­ез­да вто­ро­го ав­то­мо­би­ля. Таким об­ра­зом, пер­вый ав­то­мо­биль до встре­чи на­хо­дил­ся в пути 4 часа, и про­ехал за это время 220 ки­ло­мет­ров.

Ответ: 220 км.

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Пра­виль­но со­став­ле­но урав­не­ние, по­лу­чен вер­ный ответ2
Пра­виль­но со­став­ле­но урав­не­ние, но при его ре­ше­нии до­пу­ще­на вы­чис­ли­тель­ная ошиб­ка, с её учётом ре­ше­ние до­ве­де­но до от­ве­та1
Дру­гие слу­чаи, не со­от­вет­ству­ю­щие ука­зан­ным кри­те­ри­ям0
Мак­си­маль­ный балл2

Аналоги к заданию № 311600: 311601 Все

Источник: ГИА-2013. Ма­те­ма­ти­ка. Проб­ные ва­ри­ан­ты от ФИПИ (2 вар.)
Раздел кодификатора ФИПИ: 3.3 Ре­ше­ние тек­сто­вых задач ал­геб­ра­и­че­ским ме­то­дом