Задания
Версия для печати и копирования в MS Word
Тип 25 № 156
i

Ме­ди­а­на BM тре­уголь­ни­ка ABC яв­ля­ет­ся диа­мет­ром окруж­но­сти, пе­ре­се­ка­ю­щей сто­ро­ну BC в ее се­ре­ди­не. Длина сто­ро­ны AC равна 4. Най­ди­те ра­ди­ус опи­сан­ной окруж­но­сти тре­уголь­ни­ка ABC.

Спрятать решение

Ре­ше­ние.

Ме­ди­а­на BM делит AC по­по­лам. Центр окруж­но­сти лежит на се­ре­ди­не ме­ди­а­ны BM, тогда ON  — сред­няя линия в тре­уголь­ни­ке BMC, где O  — центр окруж­но­сти, а N  — точка пе­ре­се­че­ния этой окруж­но­сти сто­ро­ны BC. Сред­няя линия в тре­уголь­ни­ке равна по­ло­ви­не ос­но­ва­ния, по­это­му ON = 1. Сред­няя линия ON яв­ля­ет­ся ра­ди­у­сом окруж­но­сти. Так как ме­ди­а­на BM яв­ля­ет­ся диа­мет­ром, то BM = 2ON = 2. Про­ве­дем MN в тре­уголь­ни­ке BMC. Так как угол BNM опи­ра­ет­ся на диа­метр BM, то  \angle BNM=90 гра­ду­сов, таким об­ра­зом, тре­уголь­ник BNM  — пря­мо­уголь­ный. Так как MN  — сред­няя линия, то она па­рал­лель­на AB, тогда тре­уголь­ник ABC  — пря­мо­уголь­ный. Центр опи­сан­ной во­круг пря­мо­уголь­но­го тре­уголь­ни­ка окруж­но­сти лежит на се­ре­ди­не ги­по­те­ну­зы, таким об­ра­зом, ра­ди­ус опи­сан­ной во­круг тре­уголь­ни­ка ABC окруж­но­сти равен 2.

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Ход ре­ше­ния вер­ный, все его шаги вы­пол­не­ны пра­виль­но, по­лу­чен вер­ный ответ2
Ход ре­ше­ния вер­ный, чертёж со­от­вет­ству­ет усло­вию за­да­чи, но про­пу­ще­ны су­ще­ствен­ные объ­яс­не­ния или до­пу­ще­на вы­чис­ли­тель­ная ошиб­ка1
Дру­гие слу­чаи, не со­от­вет­ству­ю­щие ука­зан­ным кри­те­ри­ям0
Мак­си­маль­ный балл2

Аналоги к заданию № 156: 314847 315103 Все

Источник: ГИА по ма­те­ма­ти­ке 28.05.2013. Ос­нов­ная волна. Ва­ри­ант 1313
Раздел кодификатора ФИПИ: 7.4 Окруж­ность и круг