Медиана BM треугольника ABC является диаметром окружности, пересекающей сторону BC в ее середине. Длина стороны AC равна 4. Найдите радиус описанной окружности треугольника ABC.
Медиана BM делит AC пополам. Центр окружности лежит на середине медианы BM, тогда ON — средняя линия в треугольнике BMC, где O — центр окружности, а N — точка пересечения этой окружности стороны BC. Средняя линия в треугольнике равна половине основания, поэтому ON = 1. Средняя линия ON является радиусом окружности. Так как медиана BM является диаметром, то BM = 2ON = 2. Проведем MN в треугольнике BMC. Так как угол BNM опирается на диаметр BM, то таким образом, треугольник BNM — прямоугольный. Так как MN — средняя линия, то она параллельна AB, тогда треугольник ABC — прямоугольный. Центр описанной вокруг прямоугольного треугольника окружности лежит на середине гипотенузы, таким образом, радиус описанной вокруг треугольника ABC окружности равен 2.



