Задания
Версия для печати и копирования в MS WordНа окружности по разные стороны от диаметра AB взяты точки M и N. Известно, что ∠NBA = 43°. Найдите угол NMB. Ответ дайте в градусах.
Решение.
Угол NBA — вписанный, поэтому он равен половине дуги, на которую он опирается. Следовательно, дуга AN = 2∠NBA = 2 · 43° = 86°. Диаметр AB делит окружность на две равные части, поэтому величина дуги ANB равна 180°. Откуда дуга NB = 180° − 86° = 94°. Угол NMB — вписанный, поэтому он равен половине дуги, на которую он опирается, то есть равен 94°/2 = 47°.
Ответ: 47.
-------------
Дублирует задание № 352728.



