Задания
Версия для печати и копирования в MS WordИзвестно, что около четырехугольника ABCD можно описать окружность и что продолжения сторон AB и CD четырехугольника пересекаются в точке M. Докажите, что треугольники MBC и MDA подобны.
Решение.
Поскольку четырехугольник ABCD вписанный, сумма углов BAD и BCD равна 180°.
Следовательно,
∠MCB = 180° − ∠BCD = ∠BAD.
Получаем, что в треугольниках MBC и MDA углы MCB и MAD равны, угол M общий, следовательно, эти треугольники подобны.
-------------
Дублирует задание № 333322.Спрятать критерии



