
На рисунке изображён график функции y = ax2 + bx + c . Установите соответствие между утверждениями и промежутками, на которых эти утверждения выполняются. Впишите в приведённую в ответе таблицу под каждой буквой соответствующую цифру.
УТВЕРЖДЕНИЯ | ПРОМЕЖУТКИ | |
А) функция возрастает на промежутке Б) функция убывает на промежутке | 1) [1;2] 2) [0;2] 3) [-1;0] 4) [-2;3] |
Ответ:
Функция, изображённая на графике возрастает на промежутке и убывает на промежутке
Следовательно, на данных промежутках функция возрастает на третьем промежутке и убывает на первом.
Ответ: 31.
Примечание 1.
Заметим, что если функция непрерывна на промежутке [a; b] и возрастает (убывает) на промежутке (a; b), то она возрастает (убывает) на промежутке [a; b]. Таким образом, утверждение, что данная функция убывает на промежутке [1; 2], является верным, хотя точка 1 является точкой максимума функции.
Примечание 2.
Заметим, что при выборе промежутка возрастания (или убывания) функции требуется указать такой промежуток, во всех точках которого функция возрастает (или убывает). При этом выбранный промежуток может являться частью промежутка возрастания (или убывания) функции, то есть не требуется, чтобы функция возрастала (или убывала) только на этом промежутке, она может возрастать (или убывать) также и за его границами.