Задания
Версия для печати и копирования в MS Word
Тип Д12 № 311318
i

В гео­мет­ри­че­ской про­грес­сии  левая круг­лая скоб­ка b_n пра­вая круг­лая скоб­ка из­вест­но, что b_1=2, q= минус 2. Найти пятый член этой про­грес­сии.

Спрятать решение

Ре­ше­ние.

В силу фор­му­лы b_n=b_1 умно­жить на q в сте­пе­ни левая круг­лая скоб­ка n минус 1 пра­вая круг­лая скоб­ка , имеем:

b_5=2 умно­жить на левая круг­лая скоб­ка минус 2 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 5 минус 1 пра­вая круг­лая скоб­ка =2 умно­жить на левая круг­лая скоб­ка минус 2 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка =32.

 

Ответ: 32.

Источник: 9 класс. Ма­те­ма­ти­ка. Кра­е­вая ди­а­гно­сти­че­ская ра­бо­та. Крас­но­дар (вар. 1)
Раздел кодификатора ФИПИ: 4.2 Ариф­ме­ти­че­ская и гео­мет­ри­че­ская про­грес­сии. Фор­му­ла слож­ных про­цен­тов