Задания
Версия для печати и копирования в MS Word
Тип 23 № 154
i

В тре­уголь­ни­ке АВС углы А и С равны 20° и 60° со­от­вет­ствен­но. Най­ди­те угол между вы­со­той ВН и бис­сек­три­сой BD.

Спрятать решение

Ре­ше­ние.

Най­дем \angle ABC:

\angle ABC=180 гра­ду­сов минус \angle A минус \angle С=180 гра­ду­сов минус 20 гра­ду­сов минус 60 гра­ду­сов = 100 гра­ду­сов.

Так как BD  — бис­сек­три­са, то \angle DBC = дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби \angle ABC=50 гра­ду­сов.

Тре­уголь­ник HBC  — пря­мо­уголь­ный. Так как \angle C = 60 гра­ду­сов, то \angle HBC = 30 гра­ду­сов.

 

Таким об­ра­зом, ис­ко­мый угол DBH равен 50 гра­ду­сов минус 30 гра­ду­сов = 20 гра­ду­сов.

 

Ответ: \angle DBH = 20 гра­ду­сов.

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
По­лу­чен вер­ный обос­но­ван­ный ответ2
При вер­ных рас­суж­де­ни­ях до­пу­ще­на вы­чис­ли­тель­ная ошиб­ка, воз­мож­но при­вед­шая к не­вер­но­му от­ве­ту1
Дру­гие слу­чаи, не со­от­вет­ству­ю­щие ука­зан­ным кри­те­ри­ям0
Мак­си­маль­ный балл2

Аналоги к заданию № 154: 315053 315007 315025 ... Все

Источник: ГИА по ма­те­ма­ти­ке 28.05.2013. Ос­нов­ная волна. Ва­ри­ант 1313
Раздел кодификатора ФИПИ: За­да­чи на на­хож­де­ние ве­ли­чи­ны угла