Задания
Версия для печати и копирования в MS Word
Тип 19 № 438299
i

Какое из сле­ду­ю­щих утвер­жде­ний верно?

1)  Любой пря­мо­уголь­ник можно впи­сать в окруж­ность.

2)  Все углы ромба равны.

3)  Тре­уголь­ник со сто­ро­на­ми 1, 2, 4 су­ще­ству­ет.

Спрятать решение

Ре­ше­ние.

Про­ве­рим каж­дое из утвер­жде­ний.

1.  Утвер­жде­ние верно, вы­пук­лый че­ты­рех­уголь­ник можно впи­сать в окруж­ность тогда и толь­ко тогда, когда сумма про­ти­во­по­лож­ных углов этого че­ты­рех­уголь­ни­ка равна 180°.

2.  Утвер­жде­ние не­вер­но, про­ти­во­по­лож­ные углы ромба равны.

3.  Утвер­жде­ние не­вер­но, для того, чтобы су­ще­ство­вал тре­уголь­ник, сумма любых его двух сто­рон долж­на быть боль­ше тре­тьей сто­ро­ны.

 

Ответ: 1.


-------------
Дублирует задание № 340983.
Источник: ОГЭ по ма­те­ма­ти­ке 09.06.2023. Ос­нов­ная волна. Санкт-Пе­тер­бург. Ва­ри­ант 2309