
Через точку O пересечения диагоналей параллелограмма ABCD проведена прямая, пересекающая стороны AB и CD в точках E и F соответственно. Докажите, что AE = CF.
Решение. Треугольники AOE и COF равны по стороне и двум прилежащим к ней углам:
как вертикальные,
как накрест лежащие углы при пересечении параллельных прямых AB и CD секущей AC. Из равенства треугольников следует равенство их сходственных сторон: AE = CF. Что и требовалось доказать.
Приведем другое решение.
Точка пересечения диагоналей является центром симметрии параллелограмма (Атанасян Л. С., Геометрия 7−9, п. 47). Поэтому треугольники OEA и OFC центрально симметричны относительно точки О и, следовательно, равны. Поэтому их стороны ЕА и CF равны. Что и требовалось доказать.
| Критерии оценивания выполнения задания | Баллы |
|---|---|
| Доказательство верное, все шаги обоснованы. | 2 |
| Доказательство в целом верное, но содержит неточности. | 1 |
| Другие случаи, не соответствующие указанным критериям. | 0 |
| Максимальный балл | 2 |
PDF-версии: