Тип 23 № 471248 
Геометрические задачи на вычисление. Окружности
i
Отрезки AB и CD являются хордами окружности. Найдите длину хорды CD, если AB = 18, а расстояния от центра окружности до хорд AB и CD равны соответственно 12 и 9.
Решение.
Проведем построения и введем обозначения, как показано на рисунке. Рассмотрим треугольники AOH и BOH, они прямоугольные, стороны AO и OB равны как радиусы окружности, OH — общая, следовательно, треугольники AOH и HOB равны. Откуда
Аналогично, равны треугольники COK и KOD, откуда
Рассмотрим треугольник BOH, найдем OB по теореме Пифагора:

Рассмотрим треугольник OKD, он прямоугольный, из теоремы Пифагора найдем KD:

Таким образом, 
Ответ: 24.
Критерии проверки:| Критерии оценивания выполнения задания | Баллы |
|---|
| Ход решения верный, все его шаги выполнены правильно, получен верный ответ. | 2 |
| Ход решения верный, все его шаги выполнены правильно, но даны неполные объяснения или допущена одна вычислительная ошибка. | 1 |
| Другие случаи, не соответствующие указанным критериям. | 0 |
| Максимальный балл | 2 |
Ответ: 24.