
В трапеции ABCD основания AD и BC равны соответственно 34 и 14, а сумма углов при основании AD равна 90°. Найдите радиус окружности, проходящей через точки A и B и касающейся прямой CD, если AB = 12.
Решение. Продолжим стороны AB и CD до их пересечения в точке E. Угол AEC равен 90°, поскольку сумма углов EAD и EDA равна 90°. Рассмотрим треугольники AED и BEC, они прямоугольные, углы ECB и EDA равны как соответственные углы при параллельных прямых, следовательно, эти треугольники подобны, откуда
Найдем BE:
Пусть окружность касается прямой CD в точке F, причем точка F может лежать или на стороне CD или на ее продолжении. Отрезок OF перпендикулярен прямой CD, как радиус проведенный в точку касания, OA, OB и OF — радиусы.
Треугольник AOB — равнобедренный, OH — высота, следовательно, OH является медианой и биссектрисой. Четырехугольник OHEF — прямоугольник, потому что все его углы прямые. Откуда:
Ответ: 14,4.
| Критерии оценивания выполнения задания | Баллы |
|---|---|
| Ход решения верный, все его шаги выполнены правильно, получен верный ответ. | 2 |
| Ход решения верный, все его шаги выполнены правильно, но даны неполные объяснения или допущена одна вычислительная ошибка. | 1 |
| Другие случаи, не соответствующие указанным критериям. | 0 |
| Максимальный балл | 2 |
PDF-версии: