В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 92. Найдите стороны треугольника ABC.
Решение. Пусть точка P — точка пересечения отрезков BE и AD (см. рис.). Треугольник ABD — равнобедренный, так как его биссектриса BP является высотой. Поэтому
По свойству биссектрисы треугольника
Проведем через вершину B прямую, параллельную прямой AC. Пусть точка K — точка пересечения этой прямой с продолжением медианы AD. Тогда
Из подобия треугольников APE и KPB следует, что Поэтому
и
Следовательно
Ответ:
Критерии проверки:
| Критерии оценивания выполнения задания | Баллы |
|---|---|
| Ход решения верный, все его шаги выполнены правильно, получен верный ответ. | 2 |
| Ход решения верный, чертёж соответствует условию задачи, но пропущены существенные объяснения или допущена вычислительная ошибка. | 1 |
| Другие случаи, не соответствующие указанным критериям. | 0 |
| Максимальный балл | 2 |
Ответ:

339458
PDF-версии: 